Abstract no.: OAS4

HARDY TYPE INEQUALITIES FOR SUPERQUADRATIC AND SUBQUADRATIC FUNCTIONS

*O. P. Durojaye, **J. A. Oguntuase *Department of Mathematics and Statistics, Federal Polytechnic, Ilaro, OgunState, Nigeria, opidi2000@gmail.com **Department of Mathematics, Federal University of Agriculture, Abeokuta,Ogun-State, Nigeria, adedayo@unaab.edu.ng

Some new Hardy type inequalities for superquadratic and subquadratic functions are proved and discussed. We also derive a new class of refined Hardy-type inequalities involving a more general integral operator with a nonnegative kernel. The results obtained unify and extend several inequalities of Hardy-type for superquadratic and subquadratic functions known in the literature. Keywords: Superqudratic, Subquadratic, Inequalities.

Abstract no.: OAS5

LAGRANGIAN MECHANICAL SYSTEMS WITH FOUR ALMOST COMPLEX STRUCTURES ON SYMPLECTIC GEOMETRY

Ibrahim Yousif Ibrahim Abd Alrhman Department of Mathematics, West Kordufan University, Sudan iyibrahimi@gmail.com

Abstract No: OAS6

ULAM-HYERS STABILITY OF GENERAL nth ORDER LINEAR DIFFERENTIAL EQUATIONS

*R. Murali, **A. Ponmana Selvan PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur, India. *shcrmurali@yahoo.co.in,** selvaharry@yahoo.com

In this paper, we prove the Hyers-Ulam stability and Hyers-Ulam-Rassias stability

of the nth order homogeneous linear differential equation

$$x^{(n)}(t) + \alpha_1 x^{(n-1)}(t) + \alpha_2 x^{(n-2)}(t) + \dots + \alpha_{n-1} x'(t) + \alpha_n x(t) = 0$$

And the n^{th} non-homogeneous linear differential equation

$$x^{(n)}(t) + \alpha_1 x^{(n-1)}(t) + \alpha_2 x^{(n-2)}(t) + \dots + \alpha_{n-1} x'(t) + \alpha_n x(t) = p(t)$$

Where $x \in C^{n}[a, b]$, $p(t) \in C[a, b]$ and $[a, b] \subset \mathbb{R}$.